An involution inequality for the Kullback-Leibler divergence

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Kullback–Leibler divergence for forgetting

Non-symmetric Kullback–Leibler divergence (KLD) measures proximity of probability density functions (pdfs). Bernardo (Ann. Stat. 1979; 7(3):686–690) had shown its unique role in approximation of pdfs. The order of the KLD arguments is also implied by his methodological result. Functional approximation of estimation and stabilized forgetting, serving for tracking of slowly varying parameters, us...

متن کامل

Rényi Divergence and Kullback-Leibler Divergence

Rényi divergence is related to Rényi entropy much like Kullback-Leibler divergence is related to Shannon’s entropy, and comes up in many settings. It was introduced by Rényi as a measure of information that satisfies almost the same axioms as Kullback-Leibler divergence, and depends on a parameter that is called its order. In particular, the Rényi divergence of order 1 equals the Kullback-Leibl...

متن کامل

Kullback-Leibler Divergence for Nonnegative Matrix Factorization

The I-divergence or unnormalized generalization of KullbackLeibler (KL) divergence is commonly used in Nonnegative Matrix Factorization (NMF). This divergence has the drawback that its gradients with respect to the factorizing matrices depend heavily on the scales of the matrices, and learning the scales in gradient-descent optimization may require many iterations. This is often handled by expl...

متن کامل

Vector Quantization by Minimizing Kullback-Leibler Divergence

This paper proposes a new method for vector quantization by minimizing the Kullback-Leibler Divergence between the class label distributions over the quantization inputs, which are original vectors, and the output, which is the quantization subsets of the vector set. In this way, the vector quantization output can keep as much information of the class label as possible. An objective function is...

متن کامل

Notes on Kullback-Leibler Divergence and Likelihood

The Kullback-Leibler (KL) divergence is a fundamental equation of information theory that quantifies the proximity of two probability distributions. Although difficult to understand by examining the equation, an intuition and understanding of the KL divergence arises from its intimate relationship with likelihood theory. We discuss how KL divergence arises from likelihood theory in an attempt t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 2017

ISSN: 1331-4343

DOI: 10.7153/mia-20-17